
STAT 2005 | Tutorial 5

STAT 2005 – Programming Languages for Statistics
Tutorial 5 Debugging, Outer and Objects

2020

LIU Ran
Department of Statistics, The Chinese University of Hong Kong

1 Debugging

Sometimes, we have errors in a defined function and want to check the values inside the function. However,
if we call the function directly, we cannot see the values inside the function except the return value. We need
other methods to achieve this goal.

Here are three ways to view the values of the variables inside the function.

1.1 browser()

Use browser() command at the beginning of your function or before the loop to run the code line by line.
(Similar with debugging in C/C++)

1 my_function <- function(){
2

3 # want to see the change of result during the loop
4 browser()
5

6 # record each time’s mean value
7 result = NULL
8 for (i in 1:10) {
9 x <- rnorm(10)

10 result = c(result,mean(x))
11 }
12

13 return(result)
14 }
15

16 my_function()

You will see the result appending one by one. Specifically for loops, if you don’t want to run the code line
by line, and want each time the code will stop at the exact line, you can use the breakpoint. You can do
this in RStudio by clicking to the left of the line number in the editor, or by pressing Shift+F9 with your
cursor on the desired line.

You can see each time the code will stop at the breakpoint line. But remember that unlike the browser(),
you must use the source command to activate the breakpoints.

1 | 6



1.2 print or cat STAT 2005 | Tutorial 5

1.2 print or cat

You can print the variables inside the function:

1 my_function <- function(){
2

3 # record each time’s mean value
4 result = NULL
5 for (i in 1:10) {
6 x <- rnorm(10)
7 result = c(result,mean(x))
8 print(result) # cat(result)
9 }

10

11 return(result)
12 }
13

14 my_function()

It is a direct way to check the values inside the function. But when there are many variables to be checked,
it is quite messy.

1.3 message and sink

Because sometimes, we print some values just for debugging. After ensuring our code is good, we want to
remove the print results which are just for debugging and only remain the output results we want to show.
Here we can use message command to achieve this goal.

1

2 set.seed(2005)
3 my_function <- function(){
4

5 # record each time’s mean value
6 result = NULL
7 for (i in 1:10) {
8 x <- rnorm(10)
9 result = c(result,mean(x))

10 print(i)
11 message(result)
12 }
13

14 return(NULL)
15 }
16

17 con <- file("test.log", open = "wt")
18

19 # record the messages and outputs
20 # all the output and message will be recorded into the file test.log
21 # and there are no texts in the console
22 # append: whether or not the file will be overwritten
23 sink(con, append=F, type=c(’message’))
24 sink(con, append=F, type=c(’output’))
25

26 # just record the outputs
27 # sink(con, append=F, type=c(’output’))
28

29 my_function()
30

31 # After recording, reset the output and message record setting,
32 # Following outputs will be displayed in the console again
33 sink()
34 sink(type="message")
35

36 print(’All setting returns to the default’)

Remark 1.1. sink command is very useful for a huge function’s debugging which may have many messages
to present, but it is also more complicated than the previous two methods. If your function is small, you
can choose the much simpler one.

2 | 6



STAT 2005 | Tutorial 5

Remark 1.2. Besides message, you can also use wanring and stop to present different levels’ informa-
tion.

2 Outer

The outer product of the arrays X and Y is the array A with dimension c(dim(X), dim(Y)) where element
A[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x], Y[arrayindex.y], ...).

FUN must be a vectorized function expecting at least two arguments and returning a value with the same
length as the first (and the second).

An example in class:

1 # get the elements on the right diagonal
2 slash <- function(X) {
3 m<-ncol(X)
4 n<-nrow(X)
5 # remain the elements whose summation of indexes is equal to 5
6 # discard other elements
7 (outer(1:n,1:m,"+")==min(m,n)+1)*X
8 }
9 > matrix(1:20,ncol=4)

10 [,1] [,2] [,3] [,4]
11 [1,] 1 6 11 16
12 [2,] 2 7 12 17
13 [3,] 3 8 13 18
14 [4,] 4 9 14 19
15 [5,] 5 10 15 20
16

17 >slash(matrix(1:20,ncol=4))
18 [,1] [,2] [,3] [,4]
19 [1,] 0 0 0 16
20 [2,] 0 0 12 0
21 [3,] 0 8 0 0
22 [4,] 4 0 0 0
23 [5,] 0 0 0 0

Another example: if we want to create a matrix aij = i + j and the dimension is c(3,3):

1 > dimension = 3
2 > A = outer(1:dimension,1:dimension,’sum’)
3 Error in dim(robj) <- c(dX, dY) :
4 dims [product 9] do not match the length of object [1]
5

6 > dimension = 3
7 > A = outer(1:dimension,1:dimension,’+’)
8 [,1] [,2] [,3]
9 [1,] 2 3 4

10 [2,] 3 4 5
11 [3,] 4 5 6

This is because your function must return a value with the same length as the first (and the second) when
it is a vector. In the outer command, we do not calculate the function value by elements. We will do it in
a vectorized version:

1 > sum(c(1,2,3),1)
2 [1] 7
3

4 # a vector with the same length
5 > c(1,2,3) + 1
6 [1] 2 3 4

So, When you use the outer command, please first check your input function. Does it satisfy the require-
ments of outer?

3 | 6



STAT 2005 | Tutorial 5

3 Objects and Classes in R(optional)

Last week, we talked about the function can have different effects on objects with different classes. Let’s
have a brief review about it.

Next, due to the time limitation, I will give a very brief introduction of OOP in R.

3.1 S3 and S4 classes

There are two main systems to define a class, S3 and S4. S3 is the older system which is informal. For
example, an object can have several classes. To be more formal and rigorous, people propose a new system
S4 to replace the S3.

Nowadays, there are still some methods and classes in R with S3 classes. It is because of the compatibility
for old versions. But we are encouraged to use the S4 system. So, here I will focus on the concepts about
S4 system.

3.2 Some descriptions

1. A class is a description(type) of a thing. A new class can be defined using setClass(). For example,
you can state that person and student are two classes. (?setClass)

2. An object is an instance of a class. Objects can be created using new(). For example, John and
David could be two objects with the class student, i.e., John and David are two students.(?new)

3. A generic function is an R function which dispatches methods. (e.g. print, plot) Actually, the generic
functions do not do any computation. The only thing they do is to take the data and figure out which
class the data comes from. Finally, find the specific method for this class and call this method.(e.g.
print.htest) (?setGeneric)

4. A method is the implementation of a generic function for an object of a particular class. (e.g.
print.htest) (?setMethod)

3.3 Reason for a new class

The reason why we want to create a new class is to represent new types of data(e.g. gene expression,
space-time, hierarchical, sparse matrices). They may have very important properties to show and there may
be more efficient way to deal with these kinds of data. Therefore, we need to create a new class and new
methods for these kinds of specific data.

3.4 An example

Define two classes ’person’ and ’student’:

1 # define a class ’person’ which has properties: name, age and sex
2 # slots are properties of a class(store data)
3 person <- setClass(Class = ’person’, slots = c(name = ’character’,
4 age = ’numeric’,
5 sex = ’character’))
6

7 # create an object with the class ’person’
8 # p1 = new(’person’, name = ’John’, age = 23, sex = ’Male’)
9 p1 = person(name = ’John’, age = 23, sex = ’Male’)

10

11 # get the name of this object p1
12 p1@name
13

14 # define a class ’student’ which have the same slots with the ’person’ class and
15 # one more slot ’gpa’(inherit)

4 | 6



3.5 Another example STAT 2005 | Tutorial 5

16 # son class will inherit the slots of the father class
17 # use contains to achieve this goal
18 student <- setClass(Class = ’student’, slots = c(gpa = ’numeric’),
19 contains = ’person’)
20

21 # create an object with the class ’student’
22 p2 = new(’student’, name = ’David’,gpa = 3.9, age = 22, sex = ’Male’)
23 p2 = student(name = ’David’,gpa = 3.9, age = 22, sex = ’Male’)
24 p2@gpa

3.5 Another example

We define a polygon class and extend the generic function plot to have a method specialized for the class
polygon.

1 # slots: x coordinate, y coordinate
2 setClass(’polygon’,slots = c(x = ’numeric’, y = ’numeric’))
3

4 # extend the already defined generic function plot
5 # to define the method for the new class ’polygon’
6 setMethod(’plot’,’polygon’,
7 # here the arguments for plot function should not change
8 # actually, we don’t use y here
9 function(x,y,...){

10 plot(x@x,x@y,type = ’n’)
11 # want to get a closed fgure
12 # so we add the line between the first point and the final point
13 xp <- c(x@x, x@x[1])
14 yp <- c(x@y, x@y[1])
15 lines(xp,yp,...)
16 })
17

18 p<-new(’polygon’, x = c(1,2,3,4), y = c(1,2.5,3,1))
19 plot(p,col = ’red’,lwd = 2)

Remark 3.1. More materials:

5 | 6



3.5 Another example STAT 2005 | Tutorial 5

1. More examples: Bioconductor (a free, open source and open development software project for the
analysis and comprehension of genomic data)

2. Some videos: a lecture by Prof. Peng

6 | 6

https://www.bioconductor.org/
https://www.youtube.com/watch?v=93N0HdoZW9g&t

	Debugging
	BLUEbrowser()
	BLUEprint or BLUEcat
	BLUEmessage and BLUEsink

	BLUEOuter
	Objects and Classes in R(optional)
	S3 and S4 classes
	Some descriptions
	Reason for a new class
	An example
	Another example


